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The prevalence in a turbulent mixing layer of dynamical events with a coherent 
history over substantial times suggests that it is profitable to study in detail entirely 
deterministic versions of this flow and to attempt to use a simplified synthesis of these 
solutions as the fundamental representation in a stochastic treatment of the layer. 
It is proposed that the deterministic representation of the flow be achieved by the 
embedding of a short hierarchy of motions which are studied in detail, though not 
exhaustively, in Parts 1, 2 and 3. Part 1 deals with the fundamental or first-order 
motion, which is the evolution of a layer constrained to be purely two-dimensional. 

1. Introduction 
It is often said that, since turbulent flows are unsteady solutions of the Navier- 

Stokes equations with random features, one has to choose one of two difficult courses 
to study them : the first is to solve the time-dependent equations and to average the 
solutions; the second is to average the equations first. It may be remarked that both 
courses lead to indeterminacy. The indeterminacy inherent in the second course is 
well known as the closure problem. That which stems from the first follows from the 
apparent lack of uniqueness of the solutions: if any two realizations in time, with 
apparently identical initial and boundary conditions, are distinctly different, aver- 
aging requires not only finding all such realizations but also assigning a probability 
to each. Thus it would seem that the methods of stochastic theory need be used in 
either case. 

We suggest that the real question is : how far along the way should these stochastic 
tools be used? To answer it,  we need to know to what extent realizations are similar 
to each other, or again how extensive is the space of functions that they occupy. In 
yet other words, we need to explore whether one can construct a sufficiently 
recognizable portrait of a given turbulent flow or if the flow has, so to speak, so many 
faces that a single portrait would convey no useful recognition. What we mean by 
a portrait is a prototype of the flow, made up of very few plausible and tractable 
time-dependent solutions of the Navier-Stokes equations. 

The massive attention recently paid to what is called organized or coherent 
structures can be interpreted in this light. For instance, the striking shadowgraphs 
obtained at high Reynolds numbers by Brown, Roshko, and their associates (e.g. 
Roshko 1976) are direct evidence that, while a turbulent shear layer has a number 
of stochastic features and may appear disorderly (especially when observations are 
made in time at one point), an individual panoramic realization displays an intriguing 
measure of complex order. Also, different realizations, while not identical, have a very 
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strong family resemblance. Such observations suggest that dynamical laws operate 
almost deterministically over very substantial times. This provides a strong incentive 
for first studying deterministic models of turbulent flows. A stochastic treatment can 
be used later to account for the necessarily random occurrence of initial perturbations 
and perhaps also to approximate those dynamical details for which we may fail to 
provide a deterministic description. 

This approach attracts us because, as we shall show, rather complex features of 
a real shear flow (the shear layer) resemble strongly a suitably simplified and entirely 
deterministic version of this flow. 

Fluid-mechanical paradigms have been used in the study of turbulence for a 
number of years. For instance, Synge & Lin (1943) constructed a homogeneous 
isotropic flow by randomly superposing Hill spherical vortices, and inferred, among 
other things, a law for the decay of the two-point correlation function for large 
separation distances. Townsend (1951) attempted to gain an idea of the fine details 
of turbulence by studying simple models for the straining of vortex sheets and tubes. 
Corrsin (1962) and Tennekes (1968) pursued the same idea, though somewhat less 
specifically to discuss the intermittency of the small scales and its effect on the 
kurtosis of the probability density of velocity derivatives. Saffman (1968) explored 
the consequences of averaging a two-level hierarchy of motions of random orientation, 
following a motivation that is very similar to ours. 

But in the past the paradigms were selected from the general store of special 
solutions of the equations of motion without enquiring in detail about the plausibility 
of their presence in the course of the dynamical history of the flow. Such an inquiry 
generally taxes excessively the means of unaided classical analysis. Thus the straining 
field which concentrates vorticity and steepens local gradients could only be surmised 
but not described. By now a growing body of knowledge concerning the nature of 
large-scale strain is becoming available, primarily from numerically solved initial- 
value problems. This specific knowledge should allow one to study the birth and 
growth of a hierarchy of secondary motions which depend on or are grafted onto 
specific so-called large-scale structures. 

We suspect that a hierarchy of motions can be traced only if i t  is made of very 
few fundamentally different types of motions, a property that needs to be 
demonstrated. We also assume that one elementary motion can serve as the base flow 
for the next, which is to say that the interaction between the two is primarily 
unidirectional rather than strongly reciprocal. This assumption cannot be granted 
apriori either, but i t  isnot necessarily vitiated by the nonlinearity ofthe Navier-Stokes 
equations. For instance, it  is the basis of boundary-layer theory, the boundary layer 
being grafted onto a potential flow which it affects only slightly. For hierarchies of 
interest, as for boundary layers, verification of this assumption can be made a 
posteriori. 

To return to our problem, we note, and will illustrate later, a basic difference 
between the traditional eddy of what we might call the ritual language of turbulence 
theory and the elementary motions that we have in mind: it is that  the constitutive 
elements of a stochastic theory of turbulence are chosen for their mathematical 
properties (they are usually generalized Fourier transforms of the realizations) and 
not because they resemble even vaguely a possible flow. It is typical of such elements 
that each one has one space scale, for instance, that an infinite number of them is 
required to represent the flow, and that one needs to consider the interaction between 
them all. Assumptions required to simplify this interaction are thus made on 
representations that have no physical counterparts, a great hindrance to one’s 
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physical intuition or sense of analogy. On the other hand, our eddies, i.e. our ele- 
mentary-flow candidates, are particular solutions of almost-singular partial differen- 
tial equations, and so each one has in general more than one space scale, like almost 
all non-trivial solutions of the Navier-Stokes equations in unbounded space. For the 
same reason, each one embodies an understandable dynamical evolution. 

The fact that  each solution is characterized by several very different lengthscales 
causes difficulty in relating the language of a dynamical model to  the usual language 
of turbulence as a random field. For instance, while a particular solution may be 
termed an eddy with a defined kinetic energy, that energy cannot be assigned to a 
single lengthscale or to a narrow range of scales. As a result, the classical description 
of energy flow through wavenumber space (the cascade) does not have any clear 
correspondence with the interaction between dynamical eddies of this type. That 
interaction appears in a dynamical model as the result of the instability of a special 
solution. The instability generates new motions, some with larger scales, some with 
smaller ones. As a result the range of possible lengthscales of motion increases, but 
(and this is one of the attractive features of the approach) the number of different 
types of dynamical structures, which together can generate the whole range of 
lengthscales usually associated with turbulence, is small. 

We shall see for instance that the sequential two-dimensional inetability of the 
original laminar shear layer together with the three-dimensional instability of the 
resulting spanwise vorticity distribution yields motions in which one readily identifies, 
aside from a lingering scale related to the layer initial thickness, an overall widthscale 
which grows linearly on the average, an intermediate, Reynolds-number-dependent 
scale for vorticity cores and a prominent Taylor microscale. We have not yet found 
an unambiguous dynamical path to scales smaller than the Taylor microscale. 

The approach that we suggest and for which a start is made below in the specific 
case of a free shear layer offers in general two interesting areas of study to the fluid- 
dynamicist . 

The first is the determination of the evolution of an initial distribution of vorticity, 
given certain constraints which prevent the unwanted generation of excessive details. 
Such constraints can be restriction to a two-dimensional or axially symmetric motion, 
to a low Reynolds number, or to  periodicity in space. Whereas viscosity is often of 
minor importance in the evolution of the large-scale basic motion, the inviscid 
equations may lead to  artificial complications requiring additional filters (see 
Zabusky & Overman 1981). Contemporary accounts of such problems include Amsden 
& Harlow (1964), Zabusky & Deem (1971), Christiansen (1973), Chorin (1973, 1978), 
Acton (1976), Patnaik, Sherman & Corcos (1976), Guiraud & Zeytounian (1977,1979), 
Chorin et al. (1978), Ashhurst (1979), Zabusky, Hughes & Roberts (1979), Leonard 
(1980), Riley & Metcalf (1980), Zabusky (1981) and Overman & Zabusky (1981). 

The reliability of this type of calculation should be helped in the future by the rapid 
development of the mathematical foundations of numerical approximations to  
solutions of the Navier-Stokes and Euler equations, in particular by means of vortex 
elements (Moore 1976; Hald 1979; Beale & Majda 1981, 1982). 

But so far many important geometries, i.e. many initial vorticity distributions, 
have received scant attention. Some interesting developments of a somewhat 
different type, but clearly aimed in the same direction, are reported by Cantwell 
(1981). 

The second area is, of course, the study of the secondary flows which these motions 
can create. 

In  what follows, we discuss both the primary flow and flows that derive from it  
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in the special case of the free shear layer. We propose a hierarchy of motions which 
is made of three tiers. The first tier or first-order motion is discussed in the remainder 
of this first article. It is defined as that which results from the layer’s two-dimensional 
instability. We use numerical solutions to discuss its nature and some of the more 
important properties of this restricted unstationary flow. They include details of 
roll-up and pairing and of the history of strain during these events. We also examine 
to what extent and how, according to the two-dimensional model, the initially 
non-homogeneous distribution of a transported diffusive scalar is homogenized by the 
combination of differential advection and molecular diffusion. 

These characteristics of the two-dimensional flow in turn govern the development 
of additional degrees of freedom : I n  Part 2 of this study (Corcos & Lin 1984), starting 
with a simple shear layer slightly perturbed by both two-dimensional and three- 
dimensional disturbances, we repeat our nonlinear calculations of the growth of the 
two-dimensional motion and simultaneously use this flow as the time-dependent 
parent flow upon which the (linearized) three-dimensional perturbations grow. This 
leads to the development of second-order motion. The calculation demonstrates that 
the dynamical effect of the new motion on the first-order flow is not considerable. 
It reveals that the layer becomes segregated into regions in which the kinetic energy 
of the secondary flow is quite weak (though the value of the streamwise vorticity may 
reach a maximum) and regions of intense magnitude and production rate of 
three-dimensional kinetic energy. It also shows that pairing can inhibit the continuous 
growth of this motion. 

I n  Part 3 (Lin & Corcos 1984) we use idealizations of the parent flow to study first 
simple analytical linear models of the second-order flow and then numerical solutionst 
of the corresponding nonlinear evolution of this flow. The nonlinear study shows that 
the distribution in space of streamwise vorticity becomes radically different when its 
circulation is strong enough. The rate of molecular mixing of scalars is also strongly 
dependent on this distribution, i.e. on the type of balance which is possible between 
strain (from the first-order flow), self-induction, and diffusion of streamwise vorticity. 

Finally, we follow the birth and development of one possible third-order motion 
by using as a base an idealized second-order flow. The former is made of smaller eddies 
which grow out of the instability of the latter if the initial Reynolds number is 
sufficiently large. We encounter roll-up and limited pairing of streamwise vorticity, 
but the outcome is deeply affected by the streamwise strain. In  fact, the flow 
evolution here, and the one mentioned above, lead through very different dynamic 
histories, essentially to  the same end result. 

The reader will become aware that the proposed portrait of the shear layer is far 
from completed. It would be more accurate to characterize the following as a series 
of photographs, too anatomically detailed to be directly incorporated into a 
functional model, together with a series of preliminary sketches. Nevertheless, it  is 
hoped that the approach will be viewed as fruitful enough to pursue in this as well 
as in other contexts. 

2. The shear layer 
2.1. Motivation 

The shear layer is a turbulent zone of transition between two parallel streams 
(1 and 2) each with a uniform velocity (U ,  and U,) both assumed to be in the 
x-direction. It can easily be created in the laboratory and it has been the object 

t See also the asymptotic analysis by Neu (1984b). 
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of numerous studies of different types. It is a particularly attractive flow for several 
reasons. 

(1) It is a prototype of a separated flow or of counterflowing streams. It is also 
approximated in some combustors and chemical lasers. It is found in natural flows 
whenever two streams of different velocity merge as in the discharge of a river in a 
lake or an estuary, although, in nature, the density of the fluid is frequently stratified 
so that buoyancy may play an important role in the development of the layer. 

(2) The vorticity is initially unidirectional and of one sign. It possesses a non-trivial 
invariant for all times, regardless of local production (e.g. through baroclinicity), i.e. 

Q,dzdx = U,- U ,  = AU = 2U = constant, t 6 rm 
where x is the streamwise, y the spanwise, and z the cross-stream direction, Q, is the 
y-component of the vorticity f2 and L is a suitable length. 

(3) Detailed finite-difference solutions of the two-dimensional problem have been 
obtained (for relatively low values of the Reynolds number), from which the 
behaviour of the flow for all times can be inferred approximately : The initial roll-up 
phase of the nonlinear instability that characterizes it has been studied on a t  least 
six separate occasions by finite differences (Amsden & Harlow 1964; Tanaka 1975; 
Deem 1977; Patnaik, Sherman & Corcos 1976; Acton 1976; Peltier, Halle & Clark 
1978; Riley & Metcalf 1980). The latter also calculated interaction with a first 
subharmonic. The two-dimensional problem has also been attacked by a variety of 
alternative numerical techniques (see e.g. Ashurst 1979 ; Delcourt & Brown 1979). 

(4) The shear layer has in addition been studied in extraordinary detail in the 
laboratory a t  high and low Reynolds numbers (see e.g. Liepmann & Laufer 1947; 
Bradshaw 1966; Wygnanski & Fiedler 1970; Winant & Browand 1974; Brown & 
Roshko 1974; Batt 1975; Browand & Weidman 1976; Konrad 1977; Pui & Gartshore 
1978; Breidenthal1978; Koop & Browand 1979; Wygnanski et al. 1979; Latigo 1979; 
Hussain & Clark 1981 ; Browand & Troutt 1980). 

(5) Finally, as has already been mentioned, it  is perhaps in the turbulent shear layer 
that dynamical coherence is both most strikingly apparent and most successfully 
modelled. 

2.2 .  Time and space development 
If a shear layer originates in the merger of two streams, it will develop in the 
streamwise direction. This is almost always the natural way in which such flows occur. 
It will be convenient to call it an S-layer. On the other hand, the mathematical and 
the numerical study of such layers are far easier for a flow that is initially x-independent 
and grows in time, and so a good deal of our information originates in this version 
of the problem which we shall call a T-layer. When 2( U, - U,)/(  U ,  + U,) < 1 the two 
problems are easily shown to be equivalent? if a Galilean transformation involving 
the average velocity t( U, + U,) is used. Otherwise there are some qualitative 
differences between them, since the governing equations are parabolic in time, while 
they are elliptic in the streamwise coordinate. Thus an event (such as the coalescence 
of two vortices) which occurs in a natural flow somewhere downstream of the splitter 
plate induces a change in velocity everywhere in the flow, including upstream, 
whereas, for the layer developing in time, such an event is clearly unable to affect 
the previous development of the flow. In  addition in the S-layer (unlike the T-layer) 
there are no symmetries around any spanwise axes. As a consequence, the average 

t For a strictly incompressible fluid. 
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rate of growth of the layer into the two uniform streams need not be the same; this 
is of importance in problems involving reaction and combustion between the fluids 
from the two streams.t 

These differences between strikingly similar-looking flows has to be kept in mind. 
It introduces a measure of uncertainty in the comparison between theory or 
numerical solutions and experimental observations. 

2.3. Initial conditions 
The initial conditions can also be conceived in more than one way. We shall generally 
take them to be a laminar shear flow with a z-wise monotonic variation in velocity 
between two streams upon which is superimposed a three-dimensional spectrum of 
infinitesimal time-dependent disturbances. Shear layers downstream of a splitter 
plate will start with the merger of two boundary layers which may be turbulent a t  
the plate trailing edge. Thus the velocity profile may not be monotonic for some 
distance downstream of the origin, and the perturbations present in the flow may 
be finite. While these differences will also be kept in mind in any comparison between 
model and experiments, we will consider these two possible (but not unavoidable) 
experimental complications as outside the province of the problem. 

3. The two-dimensional instability of the shear layer 
3.1. Introduction 

This instability can be described as the endless redistribution in space of the vorticity 
Q2 that the layer possesses initially. It is made up of two chronologically (or z-wise) 
distinct phases. 

During the first phase, this redistribution occurs on the lengthscale of the initial 
layer thickness Si. In  the T-layer, a concentration of vorticity appears with a 
periodicity in the streamwise direction x and a characteristic height in the lateral 
direction z ,  both of which are proportional to Si. An additional strain-induced scale 
(vSi/AU)i also arises naturally. Here v is the kinematic viscosity. The second phase 
is the result of a sequential instability of the vorticity distributions to subharmonic 
perturbations. Each one leads to the coalescence of the previous concentration of 
vorticity into larger and more distant lumps. The coalescence of vortex centres two 
a t  a time is most frequent, and this leads to a binomial growth of both the circulation 
around each vortex and of the spacing between vortices. The time required for a 
pairing also doubles for each pairing so that the growth of the layer is, on the average, 
linear in time. 

3.2. Methods of study 
Many characteristics of the turbulent shear layer have been revealed by optical 
techniques or measured in laboratory experiments. The visual records (e.g. the dye 
films of Winant & Browand (1974), the spark-shadowgraphy for the Laplacian of the 
index of refraction in Brown & Roshko (1974), the visible products of reaction in 
Breidenthal (1978), the dye fluorescence under excitation by a sheet of laser light of 
Dimotakis, Miake-Lye & Papantoniou (1982)) have played a crucial role in directing 
attention to possible dynamical events. But of the measurements, only a fraction are 
directly related to the quantities most necessary to the understanding of the flow 
dynamics. For instance, even the spanwise component of vorticity is rarely reported 

t I am indebted to J.  A. Broadwell for pointing this out. The first experimental observation of 
a difference in entrainment rates seems to he due to Konrad (1977). 
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(for examples, see Browand & Weidman 1976; Hussain 1980). When it is, it  most 
probably suffers, even with conditional sampling, from poor resolution as a result of 
the lack of precise repeatability of the flow pattern. 

The linear theory of shear-layer stability is well developed for both kinds of shear 
layers. But it applies to a very early part of the layer evolution, and only if the initial 
layer perturbations are very small. According to both that theory and experiments, 
the growth rate of the most unstable perturbations is large enough (unless the 
Reynolds number is uncommonly low) so that the linear equation that determines 
the eigenvalues rapidly becomes inaccurate. Furthermore, methods based on expan- 
sions in powers of the perturbation amplitude cannot be expected to improve the 
accuracy of linear theory, except for discouragingly short times. 

On the other hand, a number of numerical simulations of the full equations have 
been carried out successfully. These may be viewed as numerical experiments which 
are particularly well suited to yield the history of any desired dynamical variable. 
In  the following discussion we shall make extensive use of the results of simulations 
by finite differences. The numerical scheme used in all these calculations is the second 
scheme discussed in Patnaik et al. (1976, henceforth called (I)). Full details are found 
in Sherman (1979). 

3.3. Model and notation for the two-dimensional motion 

The mathematical model for the numerical simulations is that used in (I), with the 
single exception that the variations in density are now assumed to yield negligible 
buoyancy forces. For reasons that will appear later, we nevertheless solve for the 
evolution of a passive scalar p which could represent any diffusive scalar attribute 
such as concentration of a dilute constituent of the fluid. 

If x and z are the streamwise and cross-stream directions, p the pressure, po the 
average density, v the kinematic viscosity, p the passive scalar density and D the 
diffusivity of p ,  the equations are then 

au au au 1 ap a2u a2u 

at ax az PoaX (asp a z 2 ) j  

aw aw aw 1 ap a Z w  a Z w  

at ax az Po az (ax .  az$ 

-+u-+w-+-- = v -+- 

-+u-+w-+-- = v -+- 

-+u-+w-= D aP aP aP 
at ax az 

au aw 
ax  az -+- = 0. 

(3 . la )  

(3 . lb)  

(3.1 c )  

(3 . ld )  

The streamwise velocity changes from - U to + U and the scalar from +&Ap to -4Ap 
as the layer is crossed from below to above. The flow to which perturbations are added 
is that which would be caused by molecular diffusion from initial coplanar 
discontinuities of scalar concentration and horizontal velocity at  z = 0. Thus the 

where Pr = v / D  = Prandtl or Schmidt number, 6i is half the maximum slope 
thickness of the base flow profile a t  t = 0, Si = U [ ( ~ U / ~ Z ) ~ ~ ~ ] - ~ .  We define 
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All computational results are given for a non-dimensional form of (3.1) in which the 
velocity scale is U ,  the scale for the passive scalar p is Ap, the lengthscale is the 
wavelength h of the initial disturbance (when several initial disturbances are 
introduced, h is the length of the shortest wave), and the timescale is h / U .  We define 
a = Si k, where k = 2n/h. 

The material interface of the flow is defined as made up for all times of the fluid 
particles that  were initially endowed with the value p = 0 of the scalar attribute. 
These particles are initially found near z = 0 along a curve which depends on the 
nature and amplitude of the initial perturbations. The scalar y is defined on the 
material interface as its proportional rate of extension. If u, is the component of 
velocity tangent to  the interface a t  a point, s the distance along the interfacial curve 
and 61 a small arc of the curve a t  the point, then 

Both y and the Lagrangian coordinates of identified points of the interface are 
obtained in the numerical simulation by selecting a number of points on the interface 
a t  the initial instant and displacing them a t  each timestep according to the velocity 
interpolated for the point location from the velocities obtained on the Eulerian grid. 

3.4. Two-dimensional instability, first stage : the roll-up 

This stage has its origin in the well-known so-called inviscid instability of a vorticity 
distribution endowed with a maximum to small perturbations periodic in the 
streamwise direction (see e.g. Drazin & Reid 198l).t A few features of this instability 
are of particular importance. 

I n  a streamwise-developing layer, let the x component of velocity tend to U,  as 
z - f c o  and to U, < U, as z-f-  co. Then the following hold. 

(a) Unstable perturbation wavenumbers are such that 0 < k < a/&,, where a is a 
constant of order unity. The fastest-growing perturbation has some intermediate 
value of k, and its exponential growth rate is of the order of AU/2&. But, while the 
perturbation amplitude is small, a continuous range of wavenumbers grow 
simultaneously. 

( b )  The wave velocity c, is bounded by the extreme values of U :  

U,  < c, < u,. 
I n  a coordinate system in which U ,  > 0, U ,  < 0, this leads to the necessity for u, the 
x-component of perturbation velocity, to vanish either a t  isolated points or on 
streamlines which are closed on themselves (Kelvin’s cat’s-eyes). The finite disturb- 
ances also have this property, which turns out to be of profound importance both 
for the nature of the large-scale instability and in that these expanding recirculating 
regions provide the environment required for rapid mixing. 

The physical aspect of the initial instability is described by Batchelor (1967, p. 516) 
and by Drazin & Reid (1981) for a single long wave (a 6 1). It is worth noting that 
the perturbed vorticity distribution is strained by the velocity field associated with 
i t  in such a way that one part of the vorticity layer is foreshortened while the other 
is stretched. 

7 The linear stability problem is presented more formally in Part 2 in a three-dimensional 
context. 
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3.4.1. Selection 
An early consequence of the increasing nonlinearity of the flow is suggested by 

laboratory observations : even when a continuous spectrum of small disturbances is 
present, a dominant wavelength seems to impose itself a t  least temporarily and to 
inhibit the growth of perturbations of neighbouring wavelengths, which are also 
unstable individually but which either grow less rapidly or had initially a smaller 
amplitude. Thorpe (1971) gives a striking photographic illustration of this pheno- 
menon for a moderately stratified shear layer. The selection seems far sharper than 
the one initially imposed by linear theory so that, as the wave reaches large ampli- 
tudes, it seems possible to  represent its velocity components a t  any given streamwise 

f ( t )  C &(z)cosnut ,  

where f ( t )  is, on the scale of 27c/u, a slowly modulating random function of time. A 
detailed documentation of this point must await either experiments in which selected 
perturbations of neighbouring frequencies are forced simultaneously on the initial 
layer, or an equivalent numerical study for the development of a two-dimensional 
layer downstream of a splitter plate.? 

In  any case, this observation encourages the use in numerical simulations of initial 
conditions which are much simpler than a continuous spectrum of perturbations. For 
the study of the first stage of the instability, the chosen initial perturbation is the 
eigenfunction of the wave that, according to  linear theory, has the largest growth 
rate. This wavelength is very close to that which is generally observed to grow 
initially on a layer created from two quiet streams. 

3.4.2. The nonlinear stage 
The nonlinear development of the first stage of instability can be followed through 

figures l ( a 4 )  taken from a typical simulation for which Re = 100 and 01 = 0.43. 
Streamlines and interfacial markers are shown on the same figures. As the interface 
is distorted, its length evidently increases so that it is stretched on the average. But 
the successive figures show that the stretching is quite uneven. Figure 2, a contour 
map of y as a Lagrangian function of time and origin on the material interface, 
illustrates this point further and shows that the proportional rate of stretching 
alternates positive and negative values. 

The sequence in figures l ( a 4 )  shows that the interface rolls up into a spiral, and 
that the markers migrate rapidly inward along the spiral and accumulate near its 
focus.$ The stagnation point on both edges of the figures is a saddle for the velocity 
field, whose neighbourhood is systematically depleted of markers and near which the 
material interface is consistently stretched. 

By continuity, positive values of y imply negative strain in a direction normal to 
the material interface, so that near the saddles both vorticity and scalar gradient 

station x by 00 

n-1 

t In  the numerical formulation of the layer developing in time, streamwise boundary conditions 
are taken as periodic, and the wavelengths (rather than the frequencies) of the two competing 
perturbations have neighbouring values. Then the length of the first commensurate subharmonic 
which is the minimum grid length is excessively large. Thus the time-developing version of the 
numerical problem is ill-suited to the study of this type of interaction. 

$ Thus, to obtain EL reasonable concentration of markers along the interface at some representative 
time during the roll-up, one must initially crowd them near the saddles as in figure 1 (a) .  
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FIQURE 1. The firs 

50 

40 

30 

stane of instabilitv: streamlines and material interface: a = 0.43. Re = - - >  00: 
( a )  7 = 0.5; ( b )  1.0; ( c )  1.5; (d )  2.0. The heavy line is the cat’s-eye. The dots are interfacial markers. 

layers which initially straddle the interface thin out in spite of lateral diffusion and 
form ‘ braids’. This effect is naturally more striking for high than for low Reynolds 
(or PBclet) numbers, but i t  is apparent in figures 3 (a ,  b )  (vorticity) and 4 (a, b )  (density 
or scalar concentration) for Re = 100 and Pr = v / D  = 1.  

Comparison of these figures also shows that vorticity SL, and concentrationp behave 
differently. The integral over the whole domain of the spanwise vorticity is an 
invariant as we have noted, but the integral across the layer a t  a given value of s 
is not : the local vorticity migrates away from the saddle points and towards the points 
of accumulation in such a way that, where y is positive, the total shear across the 
layer and the local value of the vorticity both steadily decrease. On the other hand, 
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Braid XO Core 
FIGURE 2. The Lagrangian history of the strain along the material interface during roll-up; a = 0.43, 
Re = 100. z,, is the abscissa of an element of interfacial surface at  7 = 0. The history of such an 
element is read vertically upwards. = 0 is the stagnation point; z,, = 0.5 is the centre of the core. 
The map is symmetric with respect to the right-hand and left-hand margins. 

the scalar p varies by a fixed amount Ap anywhere across the diffusion layer, and, 
where the latter thins out as a result of strain, the magnitude of the scalar gradient 
correspondingly increases. Analytical models for the vorticity and scalar layers, found 
in Corcos & Sherman (1976, henceforth called (11)), and in 33.6.5 below, clearly 
illustrate this difference. 

Comparison of the location of the material interface and of the diffusion layers a t  
the same time show that both the vorticity and the scalar layers are accurately 
centred on the material interface near the saddles, but, for D / v  = 1 ,  cross that surface 
after it has started winding into a spiral. On the other hand, a fair inference from 
photographs such as no. 146 in Van Dyke (1982), which show a scalar diffusion layer 
at  a high Schmidt number, is that the much thinner diffusion layer straddles the 
material interface much more successfully in that case. This issue which bears on the 
availability of convenient approximate calculations is discussed in $3.6.5. 

The nature of the instability. This was discussed and modelled in (11) for a long wave 
at  a finite Richardson number < 4, i.e. with a statically stable but dynamically 
unstable stratification in a normal gravity field. That discussion (as well as its 
modification for the shorter relevant wavelengths which are initially more unstable) 
is applicable in the present case if only the baroclinic generation of vorticity is 
neglected (set g = 0 in (2.18)). It will not be repeated here. 

The cat’s-eyes and the vorticity distribution. It is clear from figures 3(a,  b )  that the 
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FIGURE 3. Vorticity contours during roll-up; a = 0.43, Re = 100: (a )  7 = 1.5; ( b )  7 = 2.0 
Interfacial markers and cat's-eye as in figure 1 .  

area enclosed by the limiting streamlines (the cat's-eyes) grows steadily as a greater 
fraction of the total vorticity is concentrated within it. The relation between the 
fraction of fluid volume that recirculates along closed streamlines and the geometric 
distribution of the fixed amount of vorticity can be made explicit for a simple model, 
as it was in (11) (equation (3.11)). It is clear that the growth of the cat's-eyes leads 
to a growth of the displacement thickness of the layer (averaged over the wavelength), 
and that it can therefore be used as a measure of the growth of the shear layer (see 
$4.4.1). 

3.4.3. The evolution of the layer beyond the climax state 
Even for an initial Reynolds number Rei as low as 50, beyond 7 = 2.0 the shear 

across the braids near the stagnation points is less than 5 % of its initial value, and 
almost all the vorticity is found within the cat's-eyes. This condition may be taken 
as the effective end of the period of growth for the first phase of the two-dimensional 
instability. 

The layer evolution at  later times will be discussed below, but the reader should 



The mixing layer: deterministic models of a turbulent pow. Part 1 41 

1 . .  . . . . . . . . . . . . . . . . . . . . .  , , . ,  , . . , , ,  . ,  , , /  , , , . , , . , , , . . . , -  

FIGURE 4. Concentration contours during roll-up; 01 = 0.43, Re = 100, Pr = 1: (a) T = 1.5; 
( b )  7 = 2.0; -, positive or zero p ;  ----,  negative p. 

keep in mind that, as long as the initial conditions include only a perturbation with 
a single wavelength, that  evolution has no correspondence for a real shear layer. For 
it is around the time of climax and thereafter that the growth of subharmonic 
perturbations dominates the flow. 

Excluding these subharmonic perturbations for the moment, we find that the 
vorticity distribution characteristic of the climax stage (e.g. r = 2.0, figure 3 ( c )  for 
the initial amplitude chosen) is not a solution of the steady Navier-Stokes equation. 
The instability is spent in the sense that the circulation around a cat’s-eye has reached 
a maximum (which approaches the total circulation) and the flow thereafter relaxes: 
the vorticity is first advected along the closed streamlines which have become almost 
stationary, but it is also steadily diffused outward across these streamlines. This is 
illustrated in figure 13 of (I) (for a case with a slight density stratification). The 
calculation was carried three roll-up times beyond climax. The diffusion causes the 
vorticity to migrate outside the cat’s-eye, and the resulting change in the induced 
velocity leads to a steady decrease in the thickness of the cat’s-eye. Strain and 
vorticity decrease together. 

The same numerical solution shows that, beyond the climax, the vorticity contours 
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FIQURE 5.  The area of Stuart’s vortices as a function of the concentration parameter: 0, the area 
bounded by a streamline around which the circulation = 95 yo of the total circulation; 0, the area 
on the boundary of which 0 = 0.050,,,. 

tend gradually to coincide with the streamlines. If we assume that 52 = Q(+, t )  and 
if rc is the circulation around the cat’s-eye, the rate of decrease of this circulation, 
due both to  outward diffusion of the vorticity and to  the motion of the cat’s-eye 
boundary normal to itself, is given by 

where 52 is the vorticity, c refers to  the cat’s-eye boundary and A ,  is the area that 
it encloses. 

An accurate solution of (3.3) would require a faithful model of the relaxing vorticity 
and strain distributions, but there is little doubt that asymptotic solutions can be 
constructed with the help of linear viscous stability theory after a sufficient fraction 
of the vorticity has diffused out of the cat’s-eye. 

Pierrehumbert & Widnall (1981) argue that it is impossible for a rolled-up shear 
layer to relax forever in the way described above. Their hypothesis, first suggested 
by Moore & Saffman (1975), is inferred from the properties of a particular family 
of stationary inviscid z-wise-periodic vorticity distributions. These have the same 
wavelength and circulation per wavelength. In  addition their vorticity is uniform : 
‘The vortex area.. .reaches a maximum a t  a ratio of (vortex width to spacing) 
w = 0.87. . . . The existence of an upper bound for the vortex area confirms the basis 
of the tearing mechanism for shear-layer growth. If a vortex is initially characterized 
by a value of w < 0.87, turbulent entrainment of irrotational fluid will cause it to 
evolve in the direction of increasing area until the area maximum is reached. At this 
point there is no longer a nearby steady state with greater area. . . unless the vortex 
spacing is allowed to increase. Presumably then, the vortex breaks up. . .’ 

But the argument seems to require that the relaxation take place by (laminar or 
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turbulent) diffusion through a set of steady-state inviscid solutions, and indeed 
through the very special one which these authors studied. For instance, the Stuart 
(1967) solutions of the steady Euler equation, 

$ = Uk-’ In (cosh kz + A cos kx), (3.4) 

where y i  is the stream function and k = 2n/h  is the wavenumber, do not share this 
property. If we define the area of the Stuart vortex layer as either that  round which 
the value of the circulation is r, = bl(4nU/k), or, on the boundary of which 
52 = b, Q,,,, where b, = 1 - b, = E 4 1 ,  we find as shown on figure 5 (a,  b) that  the 
area occupied by the vorticity increases monotonically as A decreases to zero, i.e. 
as vortices merge and as the layer loses its periodicity and becomes a simple shear 
layer. Thus the property required for the authors’ hypothesis is not even shared by 
all stationary inviscid periodic solutions. I n  any case, the non-existence of such 
solutions does not in general imply the non-existence of viscous and damped soutions. 

For instance in the linearized stability problem for the shear layer, there are no 
inviscid eigenvalues of any kind for u > 1,  but there are eignevalues of the viscous 
problem which correspond to damped waves, no matter how thick is the layer next 
to the wavelength. For high Reynolds numbers, some of these are in fact valid 
asymptotic solutions of the nonlinear relaxation problem for large times. The final 
asymptotic state must be that of the simple shear layer. i.e. 

2 
u = Uerf{ ] 

(4V(t - to))$ ’ 
where the new time origin to < 0. 

I n  summary, if only one unstable perturbation wavelength is initially present, the 
subsequent roll-up, by hastening diffusion, ultimately serves to increase the non- 
dimensional wavenumber in such a way as to insure the decay of the perturbation. 
If a real shear layer has a different dynamical history, it is, as we shall see, because 
i t  becomes preferentially unstable to  a sequence of perturbations of increasing 
wavelengths, and not, as Pierrehumbert & Widnall suggest, because the relaxation 
by diffusion of the original roll-up is incompatible with the equations of motion. 

3.5. The second stage of instability in the two-dimensional shear layer. 
subharmonic growth and pairing 

The study of the nonlinear stages of the first instability has led us to the following 
conclusions, which taken together offer strong hints about the general nature of the 
flow in a shear layer whose rapid growth rate is unabated in time or downstream. 

(a )  The result of the first instability is the temporary concentration of the vorticity 
into separate lumped vortices. 

(b)  Each one of these finite vortices creates, and on the whole is contained by, a 
region within which streamlines are closed and the process of concentration as long 
as it lasts leads to  an increase of the area of these regions with time. During their 
growth, fluid that was streaming on either side of the layer is therefore diverted so 
that it becomes solicited by velocity along newly formed closed streamlines. Thus, 
as long as the cat’s-eye boundary expands, there is a systematic flux of fluid across 
it from the outside inward. 

(c )  The layer growth that is observed with the help of an optically visible passive 
scalar initially coincident with the vorticity is caused by the growth of the cat’s-eye 
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area within which the scalar is almost completely constrained to recirculate. This is 
discussed in greater detail by Jimenez (1980) and Jimenez, Martinez-Val & Herman 
(1981). 

( d )  Vorticity concentration and the initial layer growth associated with the roll-up 
could not occur if many waves of different phases and/or different lengths grew 
simultaneously in the same region of the shear layer : since they would have to share 
the fixed amount of vorticity, 2U available per unit length of layer, the circulation 
around each lump would be correspondingly diminished and so would the total area 
of the cat’s-eyes, and the layer thickness. Therefore, in order for a layer to approach 
its maximum possible growth rate, a single wave must be able to grow by itself within 
the space of its own length, and for the time required for one roll-up. If the initial 
conditions are made of a continuous spectrum of random perturbations, either the 
Concentration and growth associated with the roll-up will not occur or a selection must 
operate that allows waves to  grow one at a time. This implies that the dynamics of 
vigorous growth cannot be incoherent over times comparable to  a concentration time, 
i.e. at least of order A/U or over lengths at least of order A.  

( P )  Finally, according to our previous discussion, the concentration of vorticity 
caused by a single wave is a temporary event, after which the vorticity once again 
is spread uniformly in the streamwise direction. 

Now there is still a vigorous controversy among experimentalists (e.g. Dimotakis 
P t  al. 1981 ; Hussain & Clark 1981) about the later fate of spanwise vorticity. This 
lack of agreement is certainly due in part to the difficulty of measuring dynamically 
relevant quantities in a way that must not require averaging of partially stochastic 
functions, and thus their integration either in space or time. We will eschew a 
comprehensive discussion of these experimental findings, which would involve us in 
many collateral issues. But the most discriminating and therefore the most persuasive 
evidence such as that of Browand & Troutt (1980), Browand & Ho (1983) and of 
Jimenez et al. (1981) lends strong support to the thesis that  spanwise vorticity after 
roll-up is cmcentrated by coalescence into even larger, quasi-two-dimensional 
distinct vortices a t  all Reynolds numbers investigated. 

We now enquire how coalescence of vorticity occurs after roll-up, and defer to Part 
2 theoretical support for the conclusion that this coalescence is preferentially 
two-dimensional. 

3.5.1. Subharmonic growth 

Early observations of the natural or forced transition of a free shear layer (Sato 
1956; Wille 1963; Freymuth 1966; Browand 1966) indicated that the dominant 
frequency of passage of disturbances within a shear layer decreases, usually by a 
factor of 2 ,  as the observation point was moved downstream. Kelly (1967) gave a 
mathematical model of the initiation of this further modification of the flow. He 
constructed an approximate representation of the climax state of the previous or first 
stage by superposing on a mean shear the eigenfunctions of the original linear 
problem, which are periodic with wavelength A and are given a finite amplitude. He 
then added to this composite flow a small (subharmonic) perturbation with wavelength 
nA and a particular phase relation to the first wave. He found that such perturbations 
could grow rapidly, that  their growth rate depended on the amplitude of the primary 
perturbation and that the growth rate was a maximum when n = 2.  More recently, 
Pierrehumbert & Widnall (1982, see also part 2 )  performed a similar analysis, but 
starting with a steady base flow which is the Stuart solution (3.4) already discussed, 
for sclect,ed values of the parameter A ,  and treating the linear stability of this flow 
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as a two-dimensional eigenvalue problem. Both found that a perturbation with a 
wavelength twice that of the fundamental (the wavelength of the finite wave in 
Stuart’s solution) can grow faster than it would if the latter were absent? and that 
the initial growth rate of that subharmonic increases with the concentration of the 
vorticity of the fundamental. 

3.5.2. Coalescence 
This subharmonic instability is initially somewhat similar to  the instability of a 

row of point vortices studied by von Karman (see e.g. Lamb 1932), but the outcome 
is different. I n  the case of vortices of finite area, numerous experiments suggest that 
there occurs a coalescence of vorticity so that stronger, fewer, more distant vortices 
replace the previous distribution. Details are given in Brown & Roshko (1974), 
Winant & Browand (1974), Koop & Browand (1976), Jimenez et al. (1981), Ho & 
Huang (1982) and several others. 

Although the question is worth further study, it seems likely, on the basis of the 
work of Kelly (1967), of the treatment of Roshko’s data by Jimenez et al. (1981) and 
of the arguments presented above, that, of all the longer waves that can interact with 
a given fundamental, only subharmonics offer the possibility of vigorous growth. We 
have thus taken, as a prototype of a more comprehensive initial perturbation, one 
which is made up of that wave to which linear theory ascribes the maximum initial 
growth rate together with a sequence of its subharmonics. 

The bulk of our numerical simulations with composite initial perturbations was 
performed with initial conditions which include only a fundamental and its first 
subharmonic. Two cases were also calculated for which the fundamental, first and 
third subharmonics (i.e. A,  2h, 4h) were included. F. S. Sherman (unpublished) also 
studied a few additional cases such as the interaction between waves with lengths 
in the ratio + to $ on a grid which accommodated two of the first kind and three of 
the second. In  all cases investigated, the interaction is such as to lead to the eventual 
dominance of the longest wave allowed by the grid. The path taken by the interaction 
depends on the relative initial amplitude and phase of the waves of different lengths 
which have been simultaneously introduced and on their initial growth rate (according 
to linear theory). 

3.5.3. The response of the layer to a fundamental and aJirst subharmonic 

Both perturbations are introduced fort = 0 and both are eigensolutions of the linear 
stability problem. I n  some cases, the eigenfunctions are obtained by solving the 
viscous (Orr-Sommerfeld) equations, in some cases by solving the linear inviscid 
equations. These differ little, and it was verified that the subsequent numerical 
solutions of the nonlinear viscous problem are undistinguishable after a few time 
steps. 

Initial growth. On figure 6 (drawn from older calculations for a moderately stratified 
shear layer) are plotted as a function of time the height of the cat’s-eye for the 
composite wave and the integral over the left-hand half of the grid of the velocity 
component w ,  both when the subharmonic grows alone and when i t  grows together 
with the fundamental. Note that, since the fundamental is periodic over the half-grid 
length, one may consider this integral as a measure of the amplitude of the 
subharmonic alone. It will be noticed that, when the initial amplitude of the 
disturbance is sufficiently small, the initial growth rate of the subharmonic is 
unaffected by the presence of the fundamental, as linear theory predicts. Later, the 

t But  see Rrachet & Orszag (1952). 
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FIGTJRE 6. The early inhibition of the subharmonic by the fundamental; a, = 0.215, a2 = 0.1075, 
g A p ( 2 k 1 p ,  Uz)-l = 0.219. 0, H / h  for short wave alone. Other symbols denote integral of w over 
half-length of grid: 0, long wave alone; 0, long wave in presence of short wave, amplitude ratio 
aJa,  = 1; 0 ,  long wave alone; v, long wave in the presence of short wave with az/al  = 4. 

growth rate of the subharmonic is inhibited though not suppressed by the presence 
of the fundamental. The same figure shows that the length of time during which the 
fundamental succeeds in inhibiting the growth of the subharmonic depends on their 
relative amplitude. I n  fact if the initial subharmonic amplitude is sufficiently large 
that wave grows preferentially and dominates the interaction from the start. 

In  the bulk of the calculations presented, the initial ratio d of the amplitude of 
the subharmonic to that  of the fundamental is 0.5. 

The effect of the relative phases of the two perturbations. In  (I) it was demonstrated 
that the relative phase of the two perturbations bears on the course of their 
interaction. Riley & Metcalfe (1980 and personal communications) have provided 
more detailed evidence. There are two typical phases. If the initial stream function 
of the fundamental is 

VI = 91(4 exp ias, 

then the two typical phases for the subharmonic are 

( a )  $2 = c)z(z)exp$az (3.5a) 

or (b)  = q5z(z)expgi(ax+_z). (3 .5b )  

In  case ( a )  the initial effect of the long wave is to displace up and down those nodes 
of the short wave that become centres of accumulation of vorticity. This leads to the 
rotation of pairs of vortices one around the other and through their coalescence to 
new vorticity concentrations within cat's-eyes whose length has doubled. In  case ( b )  
the contribution of the long wave is instead to modulate the strength of the short-wave 
vortices. The strain field created by the stronger vortices elongates the weaker ones 
and slowly extrudes them so that the vorticity of the weaker vortices migrates 
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diagonally towards the stronger ones along newly forming braids. During this 
interaction it appears that the bulk of the migrating vorticity escapes the closed 
streamline region, so that the circulation around the surviving vortices is not 
considerably enhanced, the strain along the new braids is relatively weak, thc 
interaction is slow (on the scale of h , / U ) ,  the cat’s-eyes are elongated, and most of 
the vorticity is spread in the streamwise direction just outside the cat’s-eyes. 

For phase relations that are neither ( a )  nor (b) ,  Riley & Metcalfe show that pairing 
occurs. The linearity of the initial problem indicates that such a case is initially merely 
the superposition of cases ( a )  and ( b ) ,  so that one would expect case ( a )  to dominatc 
such an evolution after a time which depends on the proximity of the phase angle 
to (n + 1 )  %/a. For this reason we expect the flow to be dominated by pairing (phase 
a )  interactions, and we have chosen phase ( a )  in our numerical simulations. But, for 
the same reason, we would expect that  a natural layer amplifying selectively a 
spectrum of ambient subharmonic perturbations of random phases should grow less 
rapidly than one which is supplied by a sequence of subharmonics whose relative 
phase angle is given by ( 3 . 5 ~ ) .  

Streamlines, vorticity, material interface and deformation during pairing. In  figures 
7 (a-f) streamlines and interfacial markers are shown, while vorticity contours are 
given in figures 8 (u-c). The presence of the subharmonic perturbation and the slight 
concentration of vorticity which it implies a t  the centre of the grid prevent the two 
cat’s-eyes from closing there. As time increases, one notices that the two interfacial 
spirals approach each other as they rotate around the point of polar symmetry, and 
that the rate of stretching of the interface is particularly large in that region: this 
is the result of the enhanced deformation induced by the two vortices as they 
approach each other. Later (figures 7e ,  f ) ,  the configuration of the interface becomes 
quite complex. For 7 = 3 all thirteen folds of the material interface that cross the 
x-axis seem to be oriented and stretched in almost the same direction, suggesting that 
the deformation field a t  a given time is reasonably uniform over a large area which 
covers the two vortices. Its principal axis of positive strain is inclined to the line 
joining the two vortices by an angle which, one guesses, approaches 4 5 O ,  and the 
vorticity distribution for both vortices is itself strongly affected by this strain field. 

From our calculations for an initial Reynolds number of 100 or even 50, vorticity 
diffusion, even though considerably enhanced between the vortices by the large 
strain, does not destroy rapidly the individual identity of the two vortices which are 
pressed against each other, Thus, even a substantial time after the new cat’s-eye has 
reached its maximum area, the interdiffusion of the two vortices is only partial (see 
e.g. figures 8a ,  b). As a result, their precession around each other continues, and the 
deformation field created by the two joined vortices rotates along with the line joining 
the two vortex centres. The strength of this part of the deformation field evidently 
depends on the extent to which the two vortices remain distinct, and therefore on 
the degree of diffusion of the vorticity. As a result, one expects the two vorticity 
distributions to be more elongated along the rotating axis of principal strain for higher 
than for lower values of the Reynolds number. This is confirmed by calculations. For 
the inviscid cloud-in-cell calculations of Christiansen (1973) for a periodic array of 
identical initially round vortices (which coalesce if the ratio of their initial radius to 
spacing is sufficiently large) the elongation suffered by the two vortices is strikingly 
large. 

The braids issued from the two remaining stagnation points (at the left and right 
margins of the grid) are almost completely depleted of vorticity. They are also 
accurately bisected by the material interface until climax. 
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FIGURE 7 (a-d). For caption see facing page. 

We have calculated the strain rate along the complete interface as a Lagrangian 
function of time, using, as shown on figure 7 ( a ) ,  markers whose initial location 
anticipated their future migration in order to retain later a reasonable marker 
densit,y. In spite of these precautions, towards the end of the calculation (figure 7 f ), 
the extraordinary variation in the stretching history of different parts of the interface 
left us with excessively distant markers.? 

t I n  addition we found the trajectory of the crowded initial population of markers near the 
sutviving stagnation point to be quite sensitive to small errors in their initial velocities. 
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FIGURE 7 .  Roll-up and pairing: streamlines and material interface; a, = 0.43, a, = 0.215, RP = 100. 
The heavy line is the cat’s-eye. The dots are interfacial markers. These have been connected for 
clarity in ( e , f ) ,  and in (f) the circular streamlines inside the cat’s-eye have been deleted. The cat’s-eye 
is a broken line. (a )  7 = 0.5; (b)  1.0; (c) 1.5; (d) 2.0; ( P )  2.5; (f) 3.0. 

The scalar p. The distribution of the passive scalar p is shown on figure 9. It is 
relevant both to  the important problem of molecular mixing and to  the dynamical 
inferences which can be drawn from instantaneous experimental realizations of 
optically visible properties of the flow (e.g. Brown & Roshko 1974; Breidenthal 1978; 
Hussein 1981). Evidently the scalar diffusion pattern like the vorticity is influenced 
by the strain field, but the difference between the boundary conditions governing 
vorticity and density lead to important differences in their distribution, as already 
noted in $3.4.2. During pairing the braids continue to be regions of maximum density 
gradient in which the gradient layer thickness is simply governed (see $3.6.5) by the 
history of the interfacial strain and by the diffusivity. On the other hand, within the 
area that includes the two merging cores, the gradients are quite diffuse, the 
concentration is reasonably uniform and gives little direct evidence of the existence 
of the large intervortical strain. In  addition one would be hard pressed to  distinguish 
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FIGURE 8. Contours of constant vorticity and cat's-eye during pairing; a, = 0.43, a2 = 0.215, 
Re = 100: (a) 7 = 2.5; (b) 2.75; (c) 3.0. 
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FIGURE 9. Contours of the scalar p during pairing; a, = 0.43, a2 = 0.215, Re = 100, Pr = 1 ,  
T = 2.5. Dotted lines indicate negative values of p. 

the separate outlines of the two merged cores. Thus the magnitude of the density 
gradient is largest in the braids and small in the cores, whereas the value of the 
spanwise vorticity is largest in the cores and very small in the braids. As a result, 
optical techniques based (like that of Brown & Roshko 1974) on the distribution of 
a passive scalar with the same boundary conditions as t,hose used here do not yield 
direct information about vorticity concentration and must be interpreted with care. 

Nevertheless, they have played a major role in the discovery of coherent structures 
and they are useful in assessing whether and how closely a purely deterministic and 
two-dimensional model of coalescence is similar to the evolution of real coherent 
structures. For instance figure 10 compares a famous spark-shadowgraph by Roshko 
(1976) of a part of a mixing layer to our constant-density contour plots a t  7 = 3. The 
resemblance is striking and all the more significant because the two flows are different 
in several respects : 

(a)  The real flow is an S-layer, the calculated flow a T-layer; 
(b )  The event photographed is a fourth pairing, while that calculated is a first 

pairing ; 
( c )  The local Reynolds number in the real flow is a hundred times larger than in 

the calculated flow. In addition, for the real flow, the photographic contrast is related 
to a spanwise average of the Laplacian of the index of refraction, a quantity which 
is equivalent to the Laplacian of p ,  while the pattern in the calculated flow is that 
created by the magnitude of the gradient of p. 
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FIGURE 10. Contours of the scalar p for the same case; T = 3.0. Insert is 
shadowgraph from Roshko (1976). 

7 

FIQURE 11. The cat’s-eye semiheight H / h  (-), the integral of the Reynolds stresses (-.-), 
and the rate of production of kinetic energy (---) during roll-up and pairing. 

Thus the comparison suggests that the presence of three-dimensional modes of 
motion does not seriously alter the spanwise average of the large-scale evolution of 
the layer, that  successive pairings have a great resemblance to  each other, and that 
the streamwise development of the mixing layer is similar to the development in time. 

Reynolds stress. For a flow that evolves as a discrete row of isolated vortices, i t  seems 
particularly inappropriate (though traditional) to ascribe any physical significance 
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FIGURE 12. Late stages of pairing: vorticity contours and cat's-eye: (a)  T = 3.75; ( b )  T = 4.0. 
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to a mean (i.e. here x-averaged) flow and to its interaction with a perturbation field; 
such an artifact can only obscure the dynamical events that govern the flow’s 
evolution. Nevertheless, this point of view continues to be influential and is the 
motivation for numerous measurements of Reynolds stress. The concentration of 
vorticity into vortices of increasing size and the corresponding increase in the lateral 
extent of the flow wherein the velocity substantially differs from its mean loosely 
imply that perturbation energy grows during pairing, so that according to the 
traditional interpretation a large amount of work should be done by the Reynolds 
stresses upon the mean flow during that time. This ‘energy-production’ term can be 
calculated from the results of the numerical simulation as a function of time for a 
roll-up and for a roll-up and pairing. It peaks almost precisely with the rate of growth 
of the cat’s-eye area and in the absence of a new pairing vanishes with it (figure 11) .  
The integral of the Reynolds stresses reaches a maximum when the centres of the two 
vortices lie on a line at an angle of roughly :n from the positive x-axis. On these points, 
the correspondence between the computations and the measurements of Browand & 
Weidman (1976) is excellent. 

The late stages afterajrstpairing. Figures 8 ( c )  and 12 (a ,  b )  show that, in the absence 
of a second subharmonic, the precession of the two coalesced vortices and of the 
associated strain field leads to rather complicated motion of the vorticity during 
which a fraction of this vorticity is thrust outside the cat’s-eyes. Coalescence, 
accordingly, is not complete. Similar results have been discussed by Overman & 
Zabusky (1981) in connection with inviscid calculations of pairing. Apparently, 
integral invariants of the moment of the vorticity distribution (see e.g. Batchelor 
1967) require this dispersion. It can be seen from figures 8(c) and 1 2 ( a , b )  that, 
kinematically speaking, the escape of vorticity is achieved when the cat’s-eye shrinks 
as a result of the precession of the two paired vortices, leaving some of the vorticity 
in the streaming part of the flow. It is then advected to the right and left of the cat’s-eye. 
In  the inviscid calculations mentioned above, the vorticity that escapes coalescence 
is filament-like. Numerical simulations with successive pairings show that the stray 
vorticity caused by one pairing is drawn back into the braids during the next pairing 
and subsequently finds its way back to the core. The dynamical importance of this 
source of braid spanwise vorticity has not yet been assessed. 

3.5.4. Second subharmonic interaction 

In  one case a fundamental and two subharmonics were initially introduced. The 
wavenumbers were a, = 0.43, a2 = 0.215 and a3 = 0.1075 and the grid was 
correspondingly enlarged. The amplitude ratios were d, = 0.5; d2 = 0.25. The 
evolution of the two subharmonic interactions was sequential and very similar. For 
7 < 1.50 the presence of the second subharmonic could only be detected, say, on 
streamline plots by a very slight vertical displacement (up on the left and down on 
the right) of the individual cat’s-eyes associated with the first subharmonic as well 
as by a slight increase in the initial rate of growth both of their areas and of their 
maximum thickness (figure 13). Similarly, the rate of growth during roll-up is 
somewhat enhanced by the presence of a first subharmonic. 

The timescale for the final pairing is very nearly twice that for the previous one, 
and the cat’s-eye area at final climax is also very nearly twice that of the two cat’s- 
eyes a t  the climax of the first subharmonic for a single pairing. 

On the other hand, full similarity between first and second pairing would require 
that, say a t  climax, the value of the vorticity be halved at corresponding points. In  
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FIQURE 13. The growth rate of the cat’s-eye semiheight H; Re = 100: (a) one pairing, a, = 0.43, 
a2 = 0.215; (b) two pairings, a, = 0.43, a2 = 0.215, a3 = 0.1075. The amplitude ratios are 
a2/al = 0.5 and a3/a1 = 0.25. 

fact, at second climax the maximum vorticity is 9.8, while a t  first i t  is 11.8. Vorticity 
must decrease by molecular diffusion, and the diffusion rate is evidently slower than 
the rate of growth of the cat’s-eye area (ie.  the entrainment rate). Therefore there 
is only an approximate similarity between successive pairings. 

3.6. General properties 

3.6.1. Rate of growth 
The growth rate of the T-layer may be defined in several ways. We may for instance 

use as a measure of lateral scale at any time the semiheight H of the cat’s-eye, the 
cat’s-eye area A ,  divided by its wavelength, or other integral properties such as 

S,,, = UL-lJ0 (%) au -1 dz, 

0 

where the slope au/az is evaluated at z = 0, or again 

respectively the vorticity thickness and the momentum thickness. These various 
measures of thickness are shown on figure 14. None is monotonic in T ,  but a,,, has a 
particularly pronounced and narrow peak around T = 2.25. 
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FIQURE 14. Four thickness scales as functions of time for roll-up and pairing; a, = 0.43, a2 = 0.215, 
Re = 100: (a )  a,, vorticity thickness. ( b )  H ,  cat’s-eye area; (c) H ,  cat’s-eye semiheight; (d )  8, 
momentum thickness. 

In a random version of the layer, one would expect the location of this peak in 
time (for a T-layer) or in x (for an S-layer) to be distributed around some mean 
location for each pairing as suggested by the measurements of Brown & Roshko 
(1974). In  these measurements the statistical location of any event associated with 
a given pairing is distributed over a distance comparable with the distance between 
two consecutive vortices. Nevertheless, it is not clear that the measurements a t  a 
stationary streamwise station of a time-averaged value of S,,, should increase linearly 
with streamwise distance x instead of oscillating around this smoothed growth curve. 
Thus measurements of a,,, made a t  regular intervals might appear to have a measure 
of scatter or uncertainty and the momentum thickness might be preferable to 
characterize the growth rate of an experimental layer. Even this choice may not 
eliminate apparent scatter (see Browand & Latigo 1979). 

3.6.2. Comparison between calculated and experimental growth rates 

It is ofgreat interest, as implied at the beginning of $4, to compare smoothed growth 
rates provided by our deterministic two-dimensional calculations with observed 
time-averaged growth rates. This has been done for limited times (i.e. through one 
pairing) by Riley & Metcalfe (1980). But as already noted, the calculated growth rates 
in the T-layer depend on the imposed ratio of initial subharmonic amplitudes. This 
dependence is unnatural to some extent, since it is a consequence of the parabolic 
form of the problem for the T-layer. In  the S-layer the upstream conditions are only 
partially controlled by the experimentalist, since the mixing-layer vorticity induces 
upstream perturbations which are probably not negligible next to those which would 
in any case be advected along and past the splitter plate. Laufer & Mankovitz (1980) 
and Jimenez (1980) have considered this problem theoretically. The latter, in 
particular, has evaluated the perturbation field created upstream by an idealized 
pairing and inferred a minimum growth rate. But the idealization used may not be 
adequate to ensure accurate answers. Thus it is not yet known on theoretical grounds 
whether this feedback effect is strong enough to control the rate of pairing and growth 
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independently of the level of turbulence found upstream of the splitter p1ate.t On 
the other hand, i t  seems clear that  as A U / u  decreases the S-layer becomes more 
strongly parabolic (see e.g. Corcos 1981 ), the spacing between all vortices increases, 
their mutual induced field correspondingly decreases and upstream boundary con- 
ditions must reappear as external parameters. 

3.6.3. Entrainment 

The word entrainment normally connotes the rate at which irrotational fluid which 
had been part of the non-turbulent streams on either side of the mixing layer becomes 
part of the layer. An assumption underlying many older discussions of entrainment 
following the work of Corrsin & Kistler (1954) had been that entrained fluid became 
turbulent, i.e. acquired vorticity upon crossing an irregularly shaped and unsteady 
but continuous surface or very thin layer which constituted a boundary between 
turbulent and non-turbulent flow. There is no compelling reason to assume that fluid 
ingested in the turbulent region acquires almost discontinuously a finite amount of 
vorticity, and we find it useful to separate the concept of entrainment from that of 
mixing. In  our deterministic two-dimensional layer, entrainment can be defined wi tb  
some precision. 

During the initial roll-up and the successive pairings, the concentration of vorticity 
within compact regions around which circulation increases monotonically results in 
the increase of the volume occupied by the cat’s-eyes, i.e. of the volume of fluid that 
recirculates or whose streamlines are, at any time, closed on themselves. An Eulerian 
definition of entrainment rate per unit span and from both sides of the layer is simply 
the rate of increase of the recirculating area of the cat’s-eye (figure 15a). The fluid 
that enters this area is mostly irrotational. For an evaluation of the fraction of the 
fluid that is mixed as i t  enters the cat’s-eyes in the two-dimensional flow see Corcos 
& Sherman (1976). For the mixing layer, entrainment by and large precedes mixing 
and the resulting recirculation predisposes the fluid to mixing by a mechanism whose 
two-dimensional version is discussed below but which is considerably enhanced by 
three-dimensional secondary motion. 

If the fluid on the two sides of the mixing layer can be identified separately, it will 
appear to be drawn within the cat’s-eye on either side of the rolled-up material surface 
initially separating the streams. Many experimental workers refer to this descriptively 
as ‘engulfing’. Another way to look a t  i t  (figure 15b)  is to  realize that the fluid 
particles are solicited by the velocity field along open oscillating streamlines leading 
downstream when these streamlines are outside the cat’s-eye boundary and by that 
along closed streamlines when the cat’s-eye boundary has grown so as to include them. 

3.6.4. Rate of molecular mixing 
It is useful to define a measure of mixedness, the degree to  which the shear layer 

has diffused a scalar p which was initially found in different concentrations in the 
two streams. 

In work recently completed, Kaul (1982) has evaluated the perturbation created upstream by 
the presence of several vortices in the process of pairing. The vorticity of the T-layer is first 
calculated by finite differences. The S-layer vorticity is then mapped from that in the T-layer by 
a Galilean transformation supplemented by additional sources (upstream and downstream) 
required to satisfy boundary conditions. This allows the calculation of the induced velocity in the 
S-layer. It is compared with the velocity a t  the same point which would be obtained by a direct 
Galilean mapping of the T-layer velocity. For frequencies corresponding to the fundamental and 
to the first subharmonic, and even when one stream is a t  rest, he finds that neither the amplitude 
nor the phase are altered by a considerable amount. 
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I J 

FIQURE 15. Two views of entrainment: ( a )  the rate of growth of the cat’s-eye (7 = 1.0; 2.0; 2.5); 
( 6 )  the visual record of ‘engulfing’. The latter appears when a scalar fluid attribute with small 
diffusivity is segregated by the material interface. Here the interfacial evolution is taken from figure 
7. The arrows are segments of streamlines. Their lengths are arbitrary. From top to bottom : 7 = 1 . O ;  
2.0; 2.5. 

Let p have asymptotic values -p l  far above and p1 far below the shear layer. Define 
the mixed volume V, (per unit span) by 
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FIGURE 16. Scalar mixing in roll-up and pairing: 0, the ratio R, of mixed volume to the cat’s-eye 
volume (per unit span) ; 0,  cat’s-eye volume V ,  ; ---, R,, if mixing were due to simple diffusion. 
Pr = 1 .  

The integral of p itself over the whole plane is invariant if p satisfies ( 3 . 1 ~ )  and 
if there is no flux through the boundaries. But there is a flux of the quantity 
E, 3 1 -p /p l  through the curve p = 0, so that 

d 

where n is the outward normal to the contour p = 0. A similar expression holds for 
the quantity E, E 1 +p/pl  in the corresponding volume where p < 0, so that, if, a t  
time 7 = 0, the concentration is p1 everywhere above and -pl  everywhere below the 
dividing surface, 

V, = - 2 0  [ (VE,)’n ds dt’. 
0 p = o  

p1 V, is the total mass of the product in a binary diffusion-limited reaction with 
equivalence ratio of unity if the mass fraction a t  co of one of the reactants is pl .  Note 
that V, equals the integration volume (i.e. its mean value) if p = 0 throughout the 
volume, and V, = 0 if the only two possible values for p are the asymptotic values 

The value of V, can easily be calculated as a function of time from the numerical 
solution of ( 3 . 1 ~ ) .  The result is given on figure 16 for a roll-up and pairing, for 
Pr = v / D  = 1. On these figures V, is non-dimensionalized by the cat’s-eye area V,. 
If the scalar p had been mixed by molecular diffusion unaided by the strain associated 
with the vorticity concentration, the same ratio would be given by the dotted curve. 

It will be noticed that, while the initial mixed volume is larger than the area V, 
of the cat’s-eye, the ratio R, = V,/V, first decreases very sharply with increasing 
time because initially, the strain being small, V, increases by unaided diffusion, i.e. 
as ( ~ + 7 ~ ) &  (where 70 is the time required to diffuse the concentration layer from a 
discontinuity to the initial thickness Si) while V, grows exponentially. 

P1 and -P1- 

3 F L M  139 
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But, as the material interface is convuluted into several folds, the mixing rate 
evidently increases. In  figure 16(b) R, is nearly constant during a time interval for 
which the cat’s-eye growth rate V, is a maximum, i.e. the mixing rate keeps up with 
the entrainment rate. 

The final rise of the value of R, is not significant, because it occurs when the cat’s-eye 
area stops growing for lack of further pairing. Also, in the example shown on the figure, 
the ratio of mixed volume to  that which would have taken place a t  the same time 
by simple diffusion is not large (about three at the end of pairing). This is due 
primarily to the low value of the PBclet number of the flow : simple diffusion for that 
case would have generated a mixed volume equal to 10 yo of the maximum cat’s-eye 
area (at 7 = 2.75). 

3.6.5. Advection in the neighbourhood of the material interface 

The picture that has emerged from our discussion of the two-dimensional shear 
layer is as follows: within a general outline which is the average wedge (in time or 
streamwise distance) of height d containing the vortices, the material interface that 
originally separated the two streams is distorted in a series of spiralling sheets and 
the vorticity is distributed in a layer on either side of this sheet whose typical 
thickness S is a decreasing fraction of d.  The centre of the spiralling sheet is a solid 
core of vorticity whose average radius r is larger than 6 and smaller than d.  The rest 
of the flow within the wedge is irrotational. For many purposes, which include the 
study of the development of secondary motions, diffusion of scalars, reaction and 
combustion between the two streams, i t  is often in the neighbourhood of the thin sheet 
(the material interface between the two streams) that, the advective properties of the 
flow need to be known. 

Now numerical solutions of the two-dimensional Navier-Stokes equations are 
naturally Reynolds-number dependent and do not readily lend themselves to direct 
generalizations and asymptotic inferences. It is thus useful to develop alternative 
methods. One was given by Guiraud & Zeytounian (1977,1979). Another was applied 
selectively to the simplest part of the shear layer in Corcos & Sherman (1976). The 
same method was later used by Marble (1984) to study the effect of a single diffusive 
point vortex on a diffusion-controlled reaction a t  the initially plane boundary 
between two volumes of dissimilar and reacting fluids. Neu (1984a) was led to 
precisely the same approximation by a more formal asymptotic analysis of the Marble 
problem. 

The approximation is applicable when a thin diffusive layer (of vorticity or of a 
passive scalar) originally centred on the material interface has been subjected to 
consistent extension by the strain along the interface. As a result i t  remains thin, 
and the lengthscale is much longer for gradients along the interface than across it. 
We are led to it as follows. 

Consider for instance the transport of a scalar p according to 

pt+u*Vp = DV’p, (3.7) 

with idealized initial conditions p = 1 in a domain 9 bounded by a curve 93 on which 
p = 0, whcre 93 is a material interface. If D is non-dimensionally very small, we expect 
the variation of p along the spiral to be slow compared to variations normal to it,  
which leads to the parabolic approximation 

(3.8) 
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where n is the local normal to the spiral curve. But further, if the flow consistently 
elongates the interface 9, by continuity there is an inflow of fluid towards this surface. 
With local coordinates fixed in the interface such that s is tangent to  the interface, 
and n normal to it,  and with corresponding velocity components u, and w, we may 
approximate u,(s, n, t )  by u,(s, 0, t )  and w by -ny(s ,  0, t ) ,  where y = (au,/as),,,. If 
we then view u,(s, 0, t )  and y(s, 0 ,  t )  as Lagrangian functions of the initial location of 
any point on the material interface and of time 7, (5.3) becomes 

(3.9) 

The strain y need only be known along a single time-dependent curve, the material 
interface. In  the absence of an analytical solution or model for y(so, 7 ) ,  this function 
is provided by calculations such as the ones discussed in 333.3 and 3.5.3 (pp. 4 7 4 9 )  
and illustrated on figure 2. 

Illustration: the spanwise vorticity distribution. In  the two-dimensional layer, the 
spanwise vorticity obeys 

(3.10) 

Here we neglect not only diffusion along the interfacial direction but also the effect 
on 52, of the rotation of our local coordinate system, which can be shown to be small 
a t  high Reynolds numbers. I n  our local coordinates we thus rewrite (3.10) as 

aa, aa, aw, 
ny-  = v- 

a7 an an2 ’ 
__- (3.11) 

and we assume 
n 
6 

a,+O as -+fa, 

where S is the local vorticity thickness. A similarity solution exists for any y(so, 7 ) .  

It was given in Corcos & Sherman (1976) in the form? 

(3.12) 

00 

where S(7) = 6 Q,dq is the shear across the layer, q = n / d .  6 satisfies 

S2 = 62(70)exp[-r TO 2 y ( ~ ’ ) d 7 ] + n v r  TO exp[ -J: ,2y(~”)d~”]d~’,  

La 
(3.13) 

while S satisfies 

in which case 
S’+ y s  = 0, 

H = exp ( - inq2) .  

(3.14) 

(3.15) 

Thus the vorticity distribution can be evaluated once S(0) and S(0)  are specified. 
We note that this simple solution will in general seriously depart from the 

predictions of Kelvin’s vorticity theorem for an inviscid fluid. In  particular, the 
combinations of positive strain rate y and of viscosity (no matter how small) leads 
to a rapid decrease in the local value of the vorticity as well as of the shear 8. For 
instance if the strain rate is independent of 7 ,  S = So e-yr, and S+ (7cv/2y): in a time 

t The non-homogeneous term in equation (2.10) of Corcos 87, Sherman (1976) is missing for our 
uniform-density case, so that the relevant equation for the shear is (2.15) rather than (2.18). 

3-2 
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of order [(Si/Sa)2- 13i y- l ,  where Si is the initial and S, the asymptotic value of the 
thickness, so that s 

S aZ(7 ,o)  = --to, 

in a time of the same order. Thus for points on the sheet that are subjected to a 
steadily positive and large strain (such as the stagnation points), both the total shear 
acrosS the sheet and the local vorticity within i t  disappear rapidly. Wherever elements 
of material surfaces within the vortex sheet have suffered only small positive strain 
or have experienced negative strain, the total shear across the vortex sheet and the 
local vorticity will remain high, the shear, conceivably higher than its original value, 
the local vorticity only slightly less. 

A similar treatment can be used (Corcos & Sherman 1976; Corcos 1979) to  describe 
the evolution of the scalar p, whose distribution is found to be 

p = &APerf{(iD)ivM>, 

where D is the molecular diffusivity, rM = n/SM, and 6, is given by (3 .13 )  with D 
substituted for y .  As remarked in 83.4.2,  the magnitude of the gradient of the scalar 
p is thus inversely proportional to the diffusion thickness 6,. 

3.6.6. The core 

Towards the centre of the coiling interfacial spiral (the core), advected and diffusive 
attributes that straddle neighbouring folds eventually merge, because having been 
stretched less, or compressed, their diffusive thickness is larger, and/or because the 
advective pattern in the recirculating region forces neighbouring folds of the material 
interface ever closer together. 

Here the boundary conditions on either side of a diffusive layer clearly need to be 
modified, but in addition, the parabolic approximation may not be applicable. 
Returning to (3.7) and ( 3 . 9 ) ,  we see that this approximation requires both the initial 
condition i3pplan 9 +/as, and locally D / y L 2  6 1,  where L is the scale for variations 
of p along the material interface. I n  particular, where y vanishes (as i t  must in regions 
of solid-body rotation) or oscillates between positive and negative values (whenever 
the deformation is caused primarily by quasi-stationary distant centres of vorticity), 
the parabolic approximation should and does fail. A manifestation of this failure is 
the presence of large angles between the material interface and the local direction 
of constant-concentration lines (see figure 4 for instance). This departure occurs in 
our calculations for a relatively large central part of the spiral because we chose 
Pr = 1, but it would likely occur somewhere in the core even if Pr 9 1 .  On the other 
hand, in the Marble example problem, as Neu (1984a)  shows, the parabolic 
approximation is uniformly valid, essentially because y is always positive in that case 
and increases monotonically as the distance from the spiral centre decreases. 

3.6.7. The scales of the flow 

The previous discussion shows that one may define three characteristic lengthscales 
in the two-dimensional shear layer for each diffusive attribute of the flow such as 
spanwise vorticity or concentration. For the concentration p, for instance, these are 
as follows. 

( 1 )  The asymptotic thickness SM of the diffusion layer (for constant value of y and 
large times) : 



The mixing layer: deterministic models of a turbulerbt $ow. Part 1 63 

This is a reasonable estimate for the minimum diffusion-layer thickness near the 
stagnation points where y is always > 0 and near climax (when y varies slowly). From 
our calculations around that time, y x 3U/h ,  where h is the periodic spacing between 
vortices. Thus 

( 2 )  The typical total height d of the interfacial spiral that is approximately $A a t  
climax. Thus the ratio of the first two characteristic scales is 

(3) The third lengthscale is the radius r M  of that part of the scalar distribution which 
has evolved into a central solid core with weak gradients. This radius has not been 
evaluated. It is the radial distance from the spiral centre to a circle on which a 
diffusion-layer thickness S, is equal to the typical spacing between two neighbouring 
branches of the spiral. For the Marble model problem, if we identify the vortex 
circulation r with 21rh, 

Similarly there are three lengthscales associated with the vorticity distribution. These 
are d ,  S and r ,  where r is defined by analogy with rM and where 

Since S/d N ( l /Re ) i ,  S can be viewed as the Taylor microscale for the shear layer. As 
argued in Corcos (1979), no purely two-dimensional secondary local shear instability 
is possible if the flow is barotropic, so that S is the smallest possible lengthscale for 
a two-dimensional shear layer. In  fact, as we saw in $3.5, S may not be properly a 
thickness scale for spanwise vorticity layers since in the asymptotic limit for which 
it is defined ( y  = constant, t+co, i.e. effectively t > y - l )  that, component of vorticity 
tends to disappear from such layers : a t  least i t  may be said that in general only weak 
spanwise vorticity is found in layers of that thickness. But, 8s will be shown in Part 
3, S as defined here is a natural lengthscale for the gradient of streamwise vorticity. 

This work has been supported by the U.S. Office of Naval Research under contract 
N.R. 062-665. 
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